Real Roots of Quadratic Interval Polynomials

نویسندگان

  • Ibraheem Alolyan
  • I. Alolyan
چکیده

The aim of this paper is to study the roots of interval polynomials. The characterization of such roots is given and an algorithm is developed for computing the interval roots of quadratic polynomials with interval coefficients. Mathematics Subject Classification: 65G40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root Refinement for Real Polynomials

We consider the problem of approximating all real roots of a square-free polynomial f . Given isolating intervals, our algorithm refines each of them to a width of 2−L or less, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only considering finite approximations of the polynomial coefficients an...

متن کامل

Computing roots of polynomials by quadratic clipping

We present an algorithm which is able to compute all roots of a given univariate polynomial within a given interval. In each step, we use degree reduction to generate a strip bounded by two quadratic polynomials which encloses the graph of the polynomial within the interval of interest. The new interval(s) containing the root(s) is (are) obtained by intersecting this strip with the abscissa axi...

متن کامل

Scalar-vector algorithm for the roots of quadratic quaternion polynomials, and the characterization of quintic rational rotation-minimizing frame curves

The scalar–vector representation is used to derive a simple algorithm to obtain the roots of a quadratic quaternion polynomial. Apart from the familiar vector dot and cross products, this algorithm requires only the determination of the unique positive real root of a cubic equation, and special cases (e.g., double roots) are easily identified through the satisfaction of algebraic constraints on...

متن کامل

Quintic Polynomials and Real Cyclotomic Fields with Large Class Numbers

We study a family of quintic polynomials discoverd by Emma Lehmer. We show that the roots are fundamental units for the corresponding quintic fields. These fields have large class numbers and several examples are calculated. As a consequence, we show that for the prime p = 641491 the class number of the maximal real subfield of the pth cyclotomic field is divisible by the prime 1566401. In an a...

متن کامل

Computing Roots of Polynomials using Bivariate Quadratic Clipping

The paper presents a new algorithm to compute all real roots of a system of two bivariate polynomial equations over a given domain. Using the Bernstein-Bézier representation, we compute the best linear approximant and the best quadratic approximant of the two polynomials with respect to the L norm. Using these approximations and bounds on the approximation errors, we obtain a linear strip bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007